If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(u^2)+u-30=0
a = 1; b = 1; c = -30;
Δ = b2-4ac
Δ = 12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*1}=\frac{-12}{2} =-6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*1}=\frac{10}{2} =5 $
| 54-x=x | | 7b-(2B+4)=5b-10 | | 17=g–12 | | x-54=x | | 4(5^5p)-3=-31 | | 4t+3.5=12 | | 3x-2x+4=+x+2 | | |2x+7|=21 | | 1/2(3x+10)=1/2(-3x+30) | | .4(8-y)=2y+16 | | (-5/6e)-(2/3e)=-24 | | 6=2/7(2x+28 | | 25x-10=27-10 | | 4(2x-7)+6=5x+8 | | 9-x+1=-17 | | 26=m–20 | | 6+-3z=15 | | (2x+1)=(3x-11) | | 4/n=5/9 | | 5x+7-8x=2x-8 | | 7(3x-1)+30=11x-27 | | 7x+7x+5x+5x=360 | | -6y+18=-2(y-5) | | 4(2-7)+6=5x+8 | | 5(y+1)=-7y+41 | | 90=3(1+6n)-3 | | x+x-26+90+90=360 | | 4=y+36 | | -2u-36=2(u-6) | | (-3/4)y+(1/4)=1/2 | | 43x+51x-57x=23 | | 3x+2-x=9x7x+5-3 |